On a Modiied Chebyshev Pseudospectral Method
نویسنده
چکیده
presents a modiied Chebyshev pseudospec-tral method, involving mapping of the Chebyshev points, for solving rst-order hyperbolic initial boundary value problems. It is conjectured that the time step restriction for the modiied method is O(N ?1) compared to O(N ?2) for the standard Chebyshev pseudospectral method, where N is the number of discretization points in space. In the present paper we show that the modiied method is not spectrally accurate.
منابع مشابه
An improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملChebyshev rational spectral and pseudospectral methods on a semi-in5nite interval
A weighted orthogonal system on the half-line based on the Chebyshev rational functions is introduced. Basic results on Chebyshev rational approximations of several orthogonal projections and interpolations are established. To illustrate the potential of the Chebyshev rational spectral method, a model problem is considered both theoretically and numerically: error estimates for the Chebyshev ra...
متن کاملChebyshev Rational Spectral and Pseudospectral Methods on a Semi-Infinite Interval†
A weighted orthogonal system on the half line based on the Chebyshev rational functions is introduced. Basic results on Chebyshev rational approximations of several orthogonal projections and interpolations are established. To illustrate the potential of the Chebyshev rational spectral method, a model problem is considered both theoretically and numerically: error estimates for the Chebyshev ra...
متن کاملRoundoo Error Analysis of the Fast Cosine Transform and of Its Application to the Chebyshev Pseudospectral Method
The roundoo error analysis of several algorithms commonly used to compute the Fast Cosine Transform and the derivatives using the Chebyshev pseudospectral method are studied. We derive precise expressions for the algorithmic error, and using them we give new theoretical upper bounds and produce a statistical analysis. The results are compared with numerical experiments.
متن کاملBoundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems
Pseudospectral methods are investigated for singularly perturbed boundary value problems for ordinary diierential equations which possess boundary layers. It is well known that if the boundary layer is very small then a very large number of spectral collocation points is required to obtain accurate solutions. We introduce here a new eeective procedure, based on coordinate stretching and the Che...
متن کامل